int a = -5;
int b = 4;
double c = 8.0;
a) a + b < c || ( 2 * b + c / 9 > a && a + b <= c ) b) a / 9 + b >= c || ( 1 * b % 3 - c / 2 > a && b - a <= c ) c) a / 3 + b > c || (-1 * b + c > a && 2 * a <= c ) d) a + b % 2 > c || ( a != b && - c > 2 + a && b >= c ) e) 3 / a > c && ( a == b || - c > 2 - 2 * a || b >= c )
Use string literals to fully label what you've computed. For example, to find the absolute value of -92 you'd provide the following:
System.out.printf("\nAbsolute value of -92 is: %d", Math.abs(-92) );
Pert
t,P, and r should all be obtained from command line arguments.
Now, write a program that takes four double command line arguments -- lat1,lng1, lat2,lng2-- (the latitude and longitude, in degrees) of two points on the earth's surface and prints the great circle distance between them. The great circle distance, measured in nautical miles, is calculated by the following equation:
60 arccos(
sin(lat1)sin(lat2)
+
cos(lng1)cos(lng2)cos(lng1-lng2)
)
Be attentive to both the units provided by your user (degrees) and the units expected and returned by the various
Math methods you are using.
Consider the following hypothetical problem.
What is the value of the following expression if w = 3, q = -2, t = 1?
i) ( w + t < q*3 || 2 * q + t > 5 / w ) && !( q >= t)
( 3 + 1 < -2*3 || 2 * -2 + 1 > 5 / 3 ) && !( -2 >= 1)
( 4 < -6 || -4 + 1 > 1 ) && !( false )
( false || -3 > 1 ) && true
( false || false ) && true
false && true
false
ii) ( 3 + 1 < -2*3 || 2 * -2 + 1 > 5 / 3 ) && !( -2 >= 1)
false && true
false
ii) ( w + t < q*3 || 2 * q + t > 5 / w ) && !( q >= t)
( 3 + 1 < -2*3 || 2 * -2 + 1 > 5 / 3 ) && !( -2 >= 1)
( 4 < -6 || -4 + 1 > 1 ) && !( -2 >= 1)
false
iii) ( 3 + 1 < -2*3 || 2 * -2 + 1 > 5 / 3 ) && !( -2 >= 1)
true
iv) ( 3 + 1 < -2*3 || 2 * -2 + 1 > 5 / 3 ) && !( -2 >= 1)
false